Общая микробная обсемененность 11 100

Общая микробная обсемененность 11 100

Санитарная микробиология изучает микрофлору окружающей среды (включая свободноживущие и паразитические бактерии и вирусы) и влияние микрофлоры на здоровье человека и экологическую ситуацию в различных биотопах. Главная задача практической санитарной микробиологии – раннее обнаружение патогенной микрофлоры во внешней среде.

6.10.1. Санитарно-показательные микроорганизмы

Санитарно-показательные микроорганизмы (СПМ) – это представители нормальной микрофлоры, которые выделяются естественным путем в окружающую среду и там сохраняются, поэтому служат показателями санитарного неблагополучия, потенциальной опасности исследуемых объектов. Так, если на объектах обнаруживают нормальных обитателей кишечника, делают заключение о наличии фекального загрязнения и возможном присутствии патогенных энтеробактерий. Так как патогенных представителей меньше и выделить их труднее, то вначале выявляют санитарно-показательные микроорганизмы в окружающей среде, а после их выявления можно проводить поиск патогенных.

СПМ условно разделяют на 3 группы:

1.Группа А включает обитателей кишечника человека и животных, эти микроорганизмы расценивают как индикаторы фекального загрязнения. В нее входят бактерии группы кишечной палочки (БГКП) – эшерихии, энтерококки, протеи, сульфитвосстанавливающие клостридии (С. perfringens), термофилы, бактериофаги, ацинетобактер, аэромонады.

2.Группа В включает обитателей верхних дыхательных путей и носоглотки. В нее входят a- и b-гемолитические стрептококки, стафилококки (плазмокоагулирующие, лецитиназоположительные, гемолитические и антибиотикоустойчивые).

3.Группа С включает сапрофитические микроорганизмы, обитающие во внешней среде, их расценивают как индикаторы процессов самоочищения. В нее входят бактерии-аммонификаторы, бактерии-нитрификаторы, некоторые спорообразующие бактерии, грибы, актиномицеты, целлюлозобактерии, сине-зеленые водоросли.

Санитарно-показательные микробы должны отвечать следующим требованиям: они должны постоянно содержаться в выделениях человека и теплокровных животных и поступать в окружающую среду в больших количествах; не должны иметь другого природного резервуара, кроме организма человека и животных; после выделения их в окружающую среду, должны сохранять жизнеспособность в течение сроков, близких к срокам выживания патогенных микробов, выводимых из организма теми же путями; СПМ не должны размножаться в окружающей среде; не должны изменять свои биологические свойства в окружающей среде; должны быть типичными, чтобы их диагностика, индикация и идентификация осуществлялась без особого труда.

Санитарно-показательные бактерии окружающей среды.

1.Вода – бактерии группы кишечной палочки (БГКП), энтерококки, стафилококки.

2.Почва – БГКП, энтерококки, термофилы, возбудители газовой гангрены.

3.Воздух – бета-гемолитические стрептококки, стафилококки.

4.Пищевые продукты – БГКП, энтерококки, стафилококки, протей.

5.Предметы обихода – БГКП, фекальные стрептококки, стафилококки.

6.10.2. Санитарно-бактериологическое исследование воды, воздуха, почвы

Вода может быть фактором распространения таких инфекционных заболеваний как холера, брюшной тиф, паратифы, дизентерия, гепатит А, полиомиелит, лептоспироз, сибирская язва, туляремия, туберкулез, Q-лихорадка, грибковые заболевания. В основном вода загрязняется через сточные воды.

Непосредственное определение в воде патогенных микробов очень трудоемко, поэтому сначала определяют наличие СПМ, а затем определяют патогенных возбудителей.

Безопастность воды в эпидемическом отношении определяется ее соответствием нормативам по следующим индикаторным показателям для:

    • питьевой воды централизованного водоснабжения – термотолерантным колиформным бактериям общим колиформным бактериям, общему микробному числу, колифагам, спорам сульфитредуцирующих клостридий (Сан Пин 10-124 РБ 99 «Питьевая вода. Гигиенические к качеству воды централизованных систем питьевого водоснабжения. Контроль качества»);

    • воды басейнов – общим колиформным бактериям, колифагам, термотолерантным колифорным бактериям, синегнойной палочке, золотистому стафилококку, отсутствию возбудителей кишечных инфекций (Сан Пин 2.1.2 10-39-2002 «Гигиенические требования к устройству, эксплуатации и качеству воды плавательных бассейнов»);

    • требования к качеству воды при нецентрализованном водоснабжении. Санитарная охрана источников (Сан Пин 8-83-98 РБ-98);

    • методы санитарно-микробиологического анализа питьевой воды. Методические указания (МУК 4.2. 671-97).

    Санитарно-показательными микробами для воды считают бактерии группы кишечной палочки – колиформные бактерии. Под этим общим названием объединяют бактерии семейства Enterobacteriaceae, родов Escherichia, Citrobacter, Enterobacter, Klebsiella. Это грамотрицательные, не образующие спор и не обладающие оксидазной активностью палочки, ферментирующие лактозу и маннит до кислоты и газа при 37°С в течение 24 часов. Данные бактерии выделяются во внешнюю среду с испражнениями человека и теплокровных организмов.

    Среди колиформных микроорганизмов выделяют группу термотолерантных бактерий, которые ферментируют лактозу при 44°С в течение 24 ч. Эти бактерии являются показателями свежего фекального загрязнения.

    Санитарные показатели воды:

    1. Общее микробное число – количество мезофильных хемоорганотрофных бактерий в 1 мл воды, способных образовывать колонии на питательном агаре при температуре 37оС в течение 24 часов. Согласно санитарных правил и норм оно не должно превышать 50 колониеобразующих единиц (КОЕ) бактерий в 1 см3 воды.

    2.Термотолерантные колиформные бактерии – оценивается число термотолерантных колиформных бактерий в 100 см3 воды, по нормативам в 300 мл исследованной воды они должны отсутствовать.

    3.Общие колиформные бактерии – оценивается число общих колиформных бактерий в 100 см3 воды, по нормативам в 300 мл исследованной воды они также должны отсутствовать.

    Это основные показатели, которые определяют при микробиологическом контроле качества питьевой воды. По эпидемиологическим показаниям и при производственном контроле качества питьевой воды оценивают также количество колифагов, которые являются косвенными показателями присутствия в воде энтеровирусов, спор сульфитредуцирующих клостридий (С. perfringens), цист лямблий (все они в норме в исследуемой питьевой воде не должны быть обнаружены).

    Отбор проб воды для санитарно-бактериологических исследований. Цель исследований – определение состава и свойств воды по показателям, регламинтированным в нормативных документах, определение источников загрязнения водного объекта, установление программы исследований, принятие соответствующих мер.

    Пробы воды для бактериологического исследования отбирают в стерильную посуду, после наполнения емкость закрывают стерильной пробкой, обеспечивающей герметичность. Пробу воды отбирают непосредственно из крана без резиновых шлангов, водораспределительных сеток и других насадок. Объем воды зависит от того, какие микроорганизмы должны быть определены:

      • при анализе воды на индикаторные микроорганизмы – не менее 500 см3;

      • при анализе воды на индикаторные и патогенные микроорганизмы (сальмонеллы, шигеллы) – 300 см3.

      Отобранную пробу маркируют, прикрепляют этикетки к емкости, составляется акт об отборе проб воды с указанием расположением и наименованием места отбора проб, даты отбора, метода отбора, времени отбора, климатических условий окружающей среды при отборе проб, температуре воды, должности и фамилии исполнителя.

      В лабораторию пробы питьевой воды доставляют в контейнерах-холодильниках при температуре 4-100С. Время начала исследований от момента отбора проб не должно превышать 6 часов, если пробы нельзя охладить, то их анализ проводят в течение 2 часов после забора пробы.

      Определение общего числа микроорганизмов, образующих колонии на питательном агаре. Из каждой пробы производят посев не менее двух объемов по 1 мл, далее вносят по 1мл воды в стерильные чашки Петри и прибавляют в каждую чашку по 8-12 мл расплавленного и остуженного до 450С питательного агара. Содержимое чашек быстро и равномерно смешивают, избегая образования пузырьков воздуха и попадания агара на края и крышку чашки. Чашки с застывшим агаром инкубируют; учитывают только те из них, на которых выросли не более 300 изолированных колоний. Результат выражают числом KOЕ в 1 мл исследуемой пробы воды.

      Термотолерантные и общие колиформные бактерии оценивают методом мембранной фильтрации или титрационным методом.

      Метод мембранной фильтрации. Берут объем воды равный 300 мл и фильтруют по 100 мл через разные стерильные нитроцеллюлозные фильтры фильтры (используются микрофильтрационные установки с диаметром фильтрующей поверхности 35 или 47 мм и вакуумным насосом для создания разрежения 0,5-1 атм), которые затем накладывают на поверхность дифференциальной диагностической среды Эндо. Подсчитывают количество красных лактозоположительных колоний на среде Эндо, готовят из колоний мазки, окрашивают по Граму в поисках грамотрицательных палочек, определяют оксидазный тест, который должен быть у энтеробактерий отрицательным.

      Затем пересевают колонии с грамотрицательными палочками и отрицательным оксидазным тестом на полужидкую среду с лактозой (маннитом, глюкозой) и инкубируют в термостате при 37°С в течение 24 часов для определения количества общих колиформных бактерий. Для определения термотолерантных колиформных бактерий посев производят в среду, подогретую до 44оС, и инкубируют в термостате при 44оС в течение 24 часов.

      Колонии учитывают как общие колиформные бактерии при отрицательном оксидазном тесте, ферментации лактозы или маннита (глюкозы) при 37оС с образованием кислоты и газа.

      Колонии учитывают как термотолерантные колиформные бактерии при отрицательном оксидазном тесте и ферментации лактозы или маннита (глюкозы) при 44оС с образованием кислоты и газа.

      Титрационный метод. Его обычно используют для качественной оценки питьевой воды при невозможности применения метода мембранной фильтрации или при наличии в воде большого количества взвешенных веществ. Объем воды 300 мл разделяют на 3 объема по 100 мл, засевают эти пробы на лактозопептонную среду и инкубируют при 37оС в течение 24-48 часов. При наличии роста делают пересев из этих объемов на среду Эндо, далее лактозоположительные колонии идентифицируют как в предыдущем методе. Количество колиформных бактерий в этом методе определяют по специальным таблицам.

      Определение спор сульфитредуцирующих клостридий методом мембранной фильтрации. Сульфитредуцирующие клостридии (в основном это Clostridium perfringens) – палочки, грамположительные, строгие анаэробы, имеющие спору и редуцирующие сульфит натрия при температуре 440С в течение 24 часов на железо-сульфитном агаре.

      Метод основан на фильтровании 20 мл воды через мембранные фильтры, помещении их в горячий железо-сульфитный агар, сразу же после посева пробирку с агаром и фильтром для создания анаэробных условий быстро охлаждают, культивируют посевы при температуре 440С в течение 24 часов. При учете результатов подсчитывают черные изолированные колонии, выросшие как на фильтрах, так и в толще питательной среды. Результат анализа выражают числом колонийобразующих единиц (КОЭ) спор сульфитредуциирующих клостридий в 20 мл воды.

      Определение колифагов производят титрационным и прямым методами. Колифаги способны лизировать Ecoli (используется эталонная тест-культура Ecoli К12 StrR) при температуре 370С и образовывать через 18-20 часов на питательном агаре зоны лизиса.

      Принцип метода основан на предварительном подращивании колифагов в среде обогащения в присутствии Ecoli и образовании бляшек колифага на газоне Ecoli на питательном агаре. Определение наиболее вероятного числа колифагов производят по специальной таблице.

      Санитарно–бактериологическое исследование воздуха и безопастность воздуха в эпидемиологическом отношении определяется соответствием его нормативам (Сан Пин 2.1.6. 9-18-2002 «Гигиенические требования к охране атмосферного воздуха населенных пунктов»). Методы микробиологического исследования воздуха подразделяют на седиментационные и аспирационные. Наиболее простым является седиментационный метод Коха: стерильные чашки Петри с плотной питательной средой открывают в местах отбора проб воздуха и выдерживают в течение определенного времени (5-30 мин), после чего закрывают и термостатируют. По количеству выросших колоний подсчитывают микробное число воздуха. Для определения патогенных стафилококков берут чашки с желточно-солевым агаром и выдерживают 15 минут, для определения стрептококков используют чашки с кровяным агаром, для определения плесневых и дрожжевых грибов – среду Сабуро, для определения грамотрицательных неферментирующих бактерий – чашки с МПА или ЦПХ-агаром, выдерживают открытыми 2 часа. После экспозиции чашки закрывают, переворачивают, помещают в термостат и инкубируют при температуре 370С в течение 24 часов. После инкубации проводят учет количества выросших колоний микроорганизмов и при необходимости проводят идентификацию до рода и вида. Наиболее точными являются аспирационные методы исследования воздуха, основанные на фильтрации или аспирации (просасывании) воздуха через специальные фильтры, жидкости, порошки, адсорбирующие микрофлору.

      Отбор проб воздуха в помещениях стационара производят на уровне дыхания лежащего больного или на высоте рабочего стола.

      Количество микробов в воздухе варьирует в широких диапазонах – от нескольких бактерий до десятков тысяч в 1 м3. В 1 г пыли может содержаться до 1млн бактерий. Большое значение имеет чистота воздуха в операционных, реанимационных и перевязочных отделениях хирургического стационара. Общее количество микробов в операционных до операции не должно превышать 500 в 1 м3, а после операции – 100 в 1 м3.

      Санитарно–бактериологическое исследование почвы включает определение микробного числа и содержания санитарно-показательных микроорганизмов почвы.

      Гигиеническая оценка почвы населенных мест проводится согласно инструкции 2.1.7. 11-12-5-2004.

      Оценка санитарного состояния почвы проводится по результатам анализов почв на объектах повышенного риска (детские сады, игровые площадки, зоны санитарной охраны) и в санитарно-защитных зонах по следующим показателям – санитарно-показательные микроорганизмы бактерий группы кишечной палочки (БГКП) – общие колиформные бактерии, фекальные энтерококки. На свежее фекальное загрязнение почвы указывает наличие высокого индекса БГКП при низких титрах нитрофикаторов, термофилов и высоком содержании вегетативных форм Clostridium perfringens. Обнаружение энтерококков свидетельствует о свежем фекальном загрязнении.

      Обнаружение возбудителей кишечных инфекций, патогенных энтеробактерий и энтеровирусов свидетельствует об эпидемической опасности почвы.

      Почву оценивают как чистую при отсутствии патогенных бактерий и индексе санитпрно-показательных микроорганизмов до 10 клеток на 1 г почвы.

      При загрязнении почвы сальмонеллами индекс санитарно-показательных микроорганизмов БГКП и энтерококков достигает 10 клеток на 1 г почвы и более.

      Концентрация колифага в почве на уровне 10 БОЕ/г свидетельствует о загрязнении почвы.

      Отбор проб для бактериологического анализа проводится не реже 1 раза в год в местах возможного нахождения людей, животных, в местах загрязения органическими отходами.

      Образец почвы тщательно перемешивают, из него отбирают навески, величины которых вибирают исходя из предполагаемой степени загрязнения почвы и планируемых определений. Для учета почвенных микроорганизмов достаточно навески от 1 до 10 г. Первое разведение навески почвы (1:10) делают в стерильной посуде на стерильной водопроводной воде. После приготовления разведений применяют соответствующую обработку почвы с целью извлечения клеток микроорганизмов из почвенных агрегатов при помощи 10-минутного вериткального встряхивания почвенной суспензии первого разведения в пробирках с резиновыми пробками. Почву разводят до 0,0001-0,00001 г/мл. приготовленные разведения используют для посева на различные питательные среды.

      Микробное число почвы – это общее количество микроорганизмов, содержащихся в 1 г почвы.

      По микробному числу почвы судят об общей численности в основном сапрофитных микроорганизмов, вырастающих на МПА и сусло-агаре; если же необходимо выделить определенные группы микроорганизмов (например, азотфиксирующие, разлагающие клетчатку, продуцирующие антибиотики, нитрифицирующие, некоторые патогенные и т.д.), используют специальные среды и методы посева.

      Для определения коли-титра почвы используют элективные питательные среды, содержащие желчь и генциановый фиолетовый, подавляющие рост многочисленных микроорганизмов, населяющих почву, но не препятствующие росту кишечной палочки. Наиболее употребительной является жидкая среда Кесслера, которая, кроме вышеназванных компонентов, содержит пептон и лактозу, сбраживаемую E.сoli, для улавливания образовавшегося газа служат поплавок. После суточной инкубации посевов разведений почвы на среде Кесслера отбирают положительные пробы, в которых наблюдается обильное газообразование и диффузный рост, эти признаки характерны для развития E. coli, ферментирующей лактозу с образованием газа, скапливающегося в поплавке. Из отобранных посевов делают высевы на среду Эндо, инкубируют при 37°С 24 ч, отмечают характерные для E. coli темно-красные колонии с металлическим блеском, производят микроскопию и при наличии в мазках мелких грамотрицательных палочек делают вывод о присутствии E. coli.

      Перфрингенс-титр почвы – наименьшее ее количество, выраженное в граммах, в котором содержится одна жизнеспособная клетка C. perfringens. Для определения C. perfringens в почве используют железо-сульфитный агар (среду Вильсона-Блера).

      Перфрингенс-титр определяется максимальным разведением почвенной суспензии, при посеве которого развиваются характерные черные колонии. В некоторых случаях, кроме среды Вильсона-Блера, используют молочные среды (среду Тукаева). На этой среде C. perfringens энергично сбраживает лактозу, молоко быстро (в течение 3-4 ч) створаживается, образующийся газ разрывает сгустки казеина и вытесняет их в верхнюю часть пробирки. Наличие C. perfringens на средах Вильсона-Блера и Тукаева подтверждается микроскопически. В мазках, окрашенных по Граму, бациллы имеют вид крупных грамположительных палочек с прямыми концами, которые могут располагаться цепочками.

      Присутствие в почве E. coli и Enterococcus faecalis указывает на свежее фекальное загрязнение; бактерии родов Citrobacter, Enterobacter и Clostridium perfringens – на давнее фекальное загрязнение. Высокая численность сапрофитной микрофлоры свидетельствует об органическом загрязнении.

      Определение общих колиформных бактерий (ОКБ). При анализе почв, для которых предполагается невысокая степень фекального загрязнения, рекомендуется использовать титрационный метод. В качестве ускоренного метода для ана­лиза слабозагрязненных почв можно использовать метод мем­бранной фильтрации. При анализах проб с предполагаемой высокой степенью фекального загрязнения целесообразно про­водить прямой посев разведении суспензии на поверхность среды Эндо.

      Титрационный метод. Из первого разведения почвенной сус­пензии (1:10), прошедшей предварительную обработку, сте­рильной пипеткой берут 10 мл, что соответствует 1 г почвы, и засевают во флаконы с 50 мл жидкой лактозо-пептонной среды или среды Кесслера. Посев меньших количеств (0,01 г; 0,001 г и т.д.) делают по 1 мл из соответст­вующих разведении почвенной суспензии в пробирки с 9 мл той же среды. Посевы инкубируют в течение 48 ч при 37±10С. Через 24±2 ч инкубации проводят предварительную оценку посевов. При отсутствии газообразования и помутнения через 48 ч инкубации выдают отрицательный ответ.

      При наличии в посевах признаков роста (помутнения и газообразования или только помутнения) производят высев на среду Эндо и инкубируют в течение 18—24 ч при температуре 37±10С. При наличии роста на поверхности среды Эндо розо­вых или красных колоний, малиновых с металлическим блес­ком или без него проводят микроскопию колоний с последую­щей постановкой оксидазного теста.

      Метод мембранной фильтрации. Метод основан на фильтра­ции установленного объема — 5-10 мл почвенной суспензии первого разведения (1:10). Метод фильтрации почвы через мембранные фильтры проводится так же, как и фильтрация воды.

      После окончания фильтрования фильтр переносят, не пере­ворачивая его, на питательную среду Эндо с добавлением розоловой кислоты.

      Под каждым фильтром на дне чашки делают надпись с указанием объема профильтрованной пробы, номера и даты посева.

      Чашки с фильтрами ставят в термостат дном вверх и инку­бируют посевы при температуре 37±10С в течение 24±2 ч.

      Если на фильтрах обнаружен рост изолированных типичных лактозоположительных колоний: темно-красных, красных с металлическим блеском или без него или других подобною типа колоний с отпечатком на обратной стороне фильтра, подсчитывают число колоний каждого типа отдельно и подтверждают их принадлежность к ОКБ (наличие оксидазной активности, отношение к окраске по Граму, ферментация лактозы до кислоты и газа).

      Прямой поверхностный посев на агаризованные питательные среды. Посев почвенной суспензии в количестве 0,1 или 0,2 ми производят на поверхность среды Эндо шпателем. Посев при анализе сравнительно чистых почв производят из разведений от 1:10 до 1:1000, т.е. от 10-1 до 10-3. При работе с загрязненными почвами обычно используют разведения до 10-6. Посевы выращивают в термостате при 37±1°С в течении 24 ч и проводят идентификацию выросших микроорганизмов аналогично тому, как изложено при описании титрационного метода и подсчета количества колиформных бактерий в 1 г почвы. Для этого среднее число колиформных колоний, выросших на чашке, умножают на степень десятикратного разведения. Ре­зультат выражают индексом.

      Определение энтерококков. Энтерококки — грамположительные, не образующие каталазу кокки, слегка вытянутые, с заостренными концами, рас полагающиеся попарно или в виде коротких цепочек, реже одиночными кокками, полиморфны, при росте на жидких средах (лактозопептонная среда) и щелочная энтерококковая среда вызывают диффузное помутнение и образование осадка. Энтерококки определяют титрационным методом и методом мембранной фильтрации.

      Титрациоиный метод. Из разведений почвенной суспензии, прошедшей предварительную обработку, стерильной пипеткой берут 10 мл и засевают во флаконы с 50 мл жидкой среды ЛПС или ЩЭС. Посевы инкубируют при температуре 37±0,5°С 24 ч. Из среды накопления, где отмечены признаки роста, производят высев петлей на одну из плотных питательных сред МИС, ЖСТ. Через 24-48 ч инкубации посевов при температуре 37±0.5 °С на молоч-но-ингибиторной среде отмечают наличие аспидно-черных, выпуклых, с металлическим блеском (Е. faecalis) или сероватых мелких, плоских колоний (Е. faecium). Подтверждают принад­лежность колоний к энтерококкам с помощью микроскопирования окрашенных по Граму мазков и постановкой каталазного теста.

      Метод мембранных фильтров. Объем испытуемой пробы для посева выбирают с таким расчетом, чтобы не менее чем на двух фильтрах выросли изолированные колонии в количестве от 5 до 50.

      Через мембранные фильтры профильтровывают два-три деся­тикратных объема испытуемой пробы. Фильтры с посевом поме­щают на азидную среду или среду ЖСТ и инкубируют при температуре 37±0,50С в течение 24-48 ч.

      На среде ЖСТ через 24-28 ч колонии энтерококков плоские крупные с ровными краями, белые или бледно-окрашенные с небольшим кремовым или розовым оттенком, а также мали­новые. Последние образованы Е. faecalis.

      На азидной среде колонии энтерококков выпуклые с ров­ными краями, розовые, светло-розовые, равномерно окрашен­ные или с темно-красным нечетко оформленным центром.

      Все колонии, которые растут на азидной среде, можно от­нести к фекальным энтерококкам, имеющим индикаторное значение.

      При обнаружении в мазках энтерококков подсчитывают число колоний на фильтрах, суммируют и делят на объем профильтрованной воды.

      Определение колифагов. Для выявления колифагов исходную почвенную суспензию интенсивно встряхивают 10-15 мин на аппарате для встряхи­вания жидкости или вручную, центрифугируют при 4000 об/мин в течение 15 мин. Далее берут 10 мл надосадочной жид­кости, устанавливают рН 7,0, добавляют 1 мл хлороформа для освобождения воды от сопутствующей бактериальной флоры, интенсивно встряхивают и оставляют на 15 мин для осаждения хлороформа.

      Обработанную исходную пробу почвы или другие последую­щие разведения засевают по 1 мл на поверхность двух чашек с 1,5% МПА (рецепт 93) и сверху наслаивают 3 мл расплав­ленного и остуженного до 450С 1,5% МПА, содержащего 0,2 мл суточной или 0,4 мл 4-часовой бульонной культуры E.coli К12 StrR.

      Для контроля культуры 0,1 мл смыва бактерий E.coli К12 StiR (или 0,2 мл 4-часовой бульонной культуры) вносят в чашку Петри и заливают 1,5% питательным агаром. После застыва­ния чашки в перевернутом виде помещают в термостат на 18—24 ч при температуре 37±0,10С.

      Через 18—24 ч просматривают посевы в проходящем свете. Проба считается положительной при наличии полного лизиса, просветления нескольких бляшек или одной бляшки на чашке с пробой почвы при отсутствии зон лизиса на контрольной чашке.

      Учет результатов. Подсчитывают число БОЕ на двух чашках, делят на 2 и умножают на степень разведения. Результат выражают количеством БОЕ в 1 г почвы.

      Определение С. perfringens в почве. По 1 мл разведении почвы (до 1:106), прогретой при темпе ратуре 75±50С в течение 20 мин для исключения вегетативным форм, вносят в два параллельных ряда пробирок. Затем по стенке пробирок, избегая образования пузырьков воздуха, наливают по 9-10 мл железосульфитный агар, приготовленный ex tempore и прогретый до 70-800С. Для создания анаэробных условий роста пробирки быстро охлаждают, помещая в емкости с холодной водой. Посевы инкубируют при 44±10С в течение 16—18 ч. При росте в среде черных крупных колоний (грамположительные, каталазоотрицательные) выдают положительный ответ о присутствии С. perfringens в 1 г почвы

      Определение С. perfringens методом фильтрования в пробирках и в чашках Петри проводят аналогично исследованию питьевой воды.

      Определение общей численности почвенных микроорганизмов (ОМЧ). Навеску почвы, используемой для приготовления первого разведения, доводят путем добавления небольшого количеств) стерильной водопроводной воды до пастообразного состояния, растирают в течение 5 мин. Затем готовят первое разведение (1:10), т.е. 101 почвы на стерильной водопроводной воде, после чего производят разведение суспензии обычным способом. Из каждого разведения делают посев не менее двух объемов по 0,1 или 0,2 мл на поверхность почвенного агара, разлитого в стерильные чашки Петри, и равномерно шпателем растирают посев по всей поверхности чашки. Термостатирование за сеянных чашек ведут при 28-30°С в течение 72 ч. При учете результатов количество колоний на обеих чашках подсчитывают и суммируют, делят на два и умножают на степень разведения.

      VII. Антимикробная терапия

      7.1. Антимикробные средства

      Все антимикробные средства можно разделить на следующие основные группы:

      I. Химиопрепараты:

      – антибиотики;

      – антисептики.

      II. Биологические препараты:

      – бактериальные препараты – живые культуры микроорганизмов, как правило – представители нормальной микрофлоры человека, способные выделять вещества с антимикробной активностью;

      – бактериофаги – вирусы бактерий, которые используются с лечебной или профилактической целью;

      – иммунобиологические препараты – антитела против микроорганизмов и их токсинов (сыворотки и иммуноглобулины), препараты цитокинов (например, интерфероны, интерлейкины и др.)

      III. Физические факторы (температура, излучение и др.)

      Химиотерапия – лечение бактериальных, вирусных и паразитарных заболеваний с помощью химиотерапевтических препаратов, которые избирательно подавляют развитие и размножение соответствующих инфекционных агентов в организме человека.

      Химиопрофилактика – назначение химиопрепаратов с профилактической целью. Более часто в клинике используется термины антибиотикотерапия и антибиотикопрофилактика.

      Основоположником химиотерапии является немецкий ученый П. Эрлих, который в начале XX века синтезировал сальварсан, неосальварсан и другие препараты и доказал, что клетки избирательно взаимодействуют с определенными химическими веществами благодаря наличию у них специфического рецепторного аппарата. Механизм действия сульфаниламидов на микроорганизмы был открыт Р. Вудсом, который установил, что сульфаниламиды являются структурными аналогами парааминобензойной кислоты (ПАБК), участвующей в биосинтезе фолиевой кислоты, которая необходима для биохимических процессов, протекающих в клетке. Бактерии, используя сульфаниламид вместо ПАБК, погибают. В настоящее время получено большое количество антибактериальных и антипаразитарных химиотерапевтических препаратов.

      Химиопрепараты должны действовать этиотропно, а не органотропно. Безвредность препаратов устанавливают с помощью химиотерапевтического индекса (ХТИ) – отношение минимальной терапевтической дозы к максимально переносимой дозе. Он должен быть меньше единицы, если индекс больше единицы, то препарат применять нельзя.

      Различают бактериостатическое действие препарата – прекращение роста и размножения бактерий за счет нарушения биохимических процессов в клетке (тетрациклин, левомицетин, макролиды); бактерицидное действие – гибель клетки (пенициллин, стрептомицин, цефалоспорины, аминогликозиды); бактериолитическое действие – лизис микроорганизма за счет гидролиза связей между ацетилмурамовой кислотой и ацетилглюкозамином в полисахаридных цепях пептидогликанового слоя клеточной стенки (например, лизоцим).

      7.2. Микробиологические основы химиотерапии

      Микробиологический принцип.

      Антибиотики необходимо использовать только при наличии показаний. При возможности до назначения лечения необходимо:

      взять материал от больного;

      выделить чистую культуру микроорганизма и идентифицировать возбудителя;

      — определить чувствительность выделенной культуры микроорганизма к антимикробным препаратам.

      Фармакологический принцип с обязательным учетом фармакокинетики препарата.

      Успешное проведение антимикробной терапии у больных зависит от понимания фармакологии применяемых препаратов. Препарат для оптимальной терапии должен обладать следующими свойствами:

      — высокой активностью против возбудителя (предполагаемого или установленного);

      — вводиться таким способом, чтобы активные его формы достигали места локализации инфекции в концентрациях, превышающих минимально ингибирующую, в том числе и при внутриклеточной локализации возбудителя;

      — правильная дозировка препарата с соблюдением интервала между введениями;

      — минимальное количество побочных эффектов назначаемого препарата.

      Клинический принцип.

      Выбор препарата и длительность его применения зависят от формы, течения, стадии заболевания, состояния органов и систем макроорганизма.

      Эпидемиологический принцип.

      При широком использовании антибиотиков наблюдается распространение устойчивости к ним микроорганизмов в стационарах и формирование госпитальных штаммов, имеющих значительную эпидемиологическую опасность, отсюда при проведении антимикробной терапии необходимо учитывать уровень резистентности циркулирующих госпитальных штаммов.

      Фармацевтический принцип.

      Необходимо учитывать срок годности препарата, условия его хранения (могут образовываться токсичные продукты деградации).

      7.3. Антибиотики

      Антибиотики – химиотерапевтические вещества природного (микробного, грибкового, животного, растительного и т.д.), полусинтетического или синтетического происхождения, которые в малых концентрациях вызывают торможение размножения и/или гибель чувствительных к ним микроорганизмов и опухолевых клеток во внутренней среде макроорганизма.

      К антибиотикам предъявляют требования:

      — высокая избирательность (селективность) антимикробного эффекта в дозах, нетоксичных для макроорганизма;

      — сохранение антимикробного эффекта в жидкостях и тканях организма, низкий уровень инактивации белками сыворотки крови и тканевыми ферментами;

      — хорошее всасывание, распределение и выведение, обеспечивающие высокие терапевтические концентрации в макроорганизме, в течение достаточно длительного времени;

      — предупреждение развития эндотоксического шока при инфекциях, вызванных грам(-) микроорганизмами;

      — отсутствие или медленное развитие резистентности при их применении;

      — отсутствие или небольшой процент побочных эффектов;

      — должен быть длительный период полураспада (прием 1-2 раза в сутки);

      — низкая стоимость на курс терапии и высокая эффективность;

      — лекарственная форма должна быть удобной для практического использования в разных возрастных группах, при различной локализации процесса и стабильной при хранении.

      На практике ни один из препаратов не отвечает всем требованиям.



      Источник: studfile.net


      Добавить комментарий